Actions sur le document

Centre de télécommunication par satellite de Pleumeur-Bodou

- Wikipedia, 7/01/2012

48°47′05″N 3°31′00″O / 48.78472, -3.516667 Le centre de télécommunication par satellite de Pleumeur-Bodou (CTS), situé dans les Côtes-d'Armor, est à l'origine de la première transmission télévisée en mondovision via le satellite « Telstar » en en 1962[1].

Sommaire

Histoire

La première liaison télévisée Intercontinentale au monde…

Le menhir inauguré par Charles de Gaulle, en 1962
Zoom sur l'inscription.

Suite au lancement par les Soviétiques du premier satellite artificiel de l'histoire, Spoutnik, les Américains veulent une revanche et décident de lancer les programmes 'Telstar' (téléphone des étoiles) et 'RELAY', destinés à relier les deux continents (Europe-États-Unis). Le programme Telstar sera développé conjointement par AT&T; et par Bell Labs., ils concevront dans la foulée la station terrienne permettant de faire les essais à Andover dans le Maine.

Il est nécessaire de disposer de deux sites de part et d'autre de l'océan Atlantique pour que la liaison soit opérationnelle. Il faudra donc mettre en place de chaque côté de l'Atlantique des stations relais (Earth Stations). Un accord sera signé en ce sens, en avril 1961 entre la NASA, BPO et le CNET. Très tôt la France s'intéressera au projet car elle entrevoit déjà la possibilité de capter du trafic téléphonique et TV mondial et donc un certain bénéfice commercial. Le gouvernement français de l'époque (Charles de Gaulle), ayant donc décidé de s'investir dans le projet, donne son feu vert pour la création d'une station relais. La course est lancée.

La Grande-Bretagne, par l'intermédiaire du BPO (British Post-Office), se joint au mouvement en construisant à son tour sur son territoire une station relais à Goonhilly Downs(50°02′53″N 5°10′55″O / 50.04806, -5.18194), en Cornouaille.

Sous l'impulsion de Pierre Marzin, Breton d'origine et directeur du CNET à l'époque, il est décidé fin août 1961 de construire le radôme (contraction du mot : « radar » et de « dôme »)[2]. Le temps étant compté pour débuter les expérimentations, il est décidé d'acheter et d'utiliser la technologie américaine pour construire la station relais française ; les États-Unis d'Amérique fourniront la technologie, la France construira le site et les infrastructures. Pleumeur-Bodou en Bretagne ayant un sol particulier (roche granitique), une localisation particulière (absence de perturbations électromagnétiques), un horizon très dégagé et une proximité des laboratoires du CNET de Lannion, font que ce site sera choisi 48°47′10″N 3°31′26″O / 48.78611, -3.52389.

La mire reçue à h 47

Après un chantier de neuf mois conduit par la CGE (Compagnie Générale d'Électricité) en un temps record pour construire l'antenne et l'enveloppe en Dacron™ du radôme, le site est enfin prêt. 8 000 m3 de terrassement dont 3 000 m3 de rocher, 4 000 m3 de béton et 276 tonnes d'acier seront nécessaires pour construire la première station. Malgré les difficultés techniques de dernière minute et un temps exécrable pendant la construction les techniciens de la CGE réussissent leur pari et livrent le site à la date prévue. On peut dire que le CTS a vu le jour à cette époque.

Un pylône de collimation de 200 mètres de haut sera même érigé sur l'île Losquet, une île proche de l'île-Grande, afin de tester les équipements électroniques de télécommunication, les radars, le système de poursuite de la nouvelle antenne cornet ; un « répondeur » étant fixé au sommet et destiné à « simuler » le passage du satellite Telstar. Le 7 juillet 1962, l'antenne cornet est enfin prête à fonctionner soit trois jours avant le lancement de Telstar.

Le 11 juillet 1962, à h 47, la station capte les premières images de télévision transmises en direct par satellite entre Andover (États-Unis) et Pleumeur-Bodou. 190 techniciens auront la primeur, cette nuit là, de voir la première transmission « mondiovisée » au monde.

Le général de Gaulle viendra inaugurer ce nouvel outil de télécommunication le 19 octobre 1962 sur invitation de Pierre Marzin, et à cette occasion, un menhir gravé dressé devant le radôme sera inauguré également ce jour là afin de commémorer cet événement[3].

L'antenne du radôme restera en service jusqu'en 1985 puis deviendra en 1991 l'attraction de la Cité des télécoms. Le radôme est classé monument historique depuis le 29 septembre 2000. Il faut aussi savoir que cette antenne est la dernière au monde existante, en effet, le second radôme construit à l'identique aux États-Unis dans l’État du Maine (44°38′48″N 70°45′27″O / 44.64667, -70.7575) a aujourd'hui disparu, démantelé par les États-Unis.

L'expansion des services, la course technologique…

Le CTS poursuivra son expansion dès lors, au fil du temps ; suite à la formation de divers consortiums internationaux destinés à favoriser le développement des liaisons satellitaires entre les nations (Intelsat au niveau mondial et Eutelsat au niveau européen), les années suivantes verront la création de plusieurs antennes paraboliques permettant de tisser un réseau de télécommunication satellitaire mondial.

Pendant longtemps, le CTS restera le principal centre de télécommunication pour les liaisons vers l'étranger. en 1978, il sera secondé, en France, par un autre site toujours en activité : Bercenay-en-Othe, dans l'Aube. Grâce au savoir-faire en matière de télécommunications spatiale, la France installera plusieurs stations terriennes, à l'image de Pleumeur-Bodou, dans les départements d'Outre-Mer et dans plusieurs pays d'Afrique francophone, en France à Rambouillet et Issus Aussaguel (Haute-Garonne).

La fin…

L'annonce brutale de la fermeture du CTS et de l'IRET SNE(Formation), en janvier 1999 par France Telecom, engendrera de forts mouvements sociaux sur Lannion et sa région[4].

Le CTS n'étant plus compétitif dans le domaine des transmissions de données, concurrencé par l'essor des fibres optiques dans les câbles transatlantiques, conduira à la fermeture progressive à partir de 1999 et ce, jusqu'en mai 2003.

Chiffres clés

Vue du restaurant du CTS depuis PB3…
  • Personnels sur site au plus fort de l'activité du CTS : Jusqu'à 200.
  • Personnel sur site à la fermeture du CTS: 11
  • Date d'ouverture du CTS : juillet 1962
  • Date de fermeture du CTS : Programmée en 1999, le site à définitivement fermé ses portes en mai 2003.
  • 1 restaurant administratif
  • 2 courts de tennis
  • Nombre total d'antennes sur le site : 15

Directeurs du CTS de 1962 à 2003

Nom De A
M. Alain Le Bihan 1962 1966
M. Michel Popot 1966 1974
M. Jean-Pierre Colin 1974 1985
M. Robert Petit 1985 1988
M. Bernard Druais 1985 1989
M. Jean Andraud 1990 1994
M. Bernard Bertrand 1995 1999
M. Christian Pigny 2000 2001
M. Claude Le Guellec 2002 2003

Rappels sur les technologies utilisées dans la période : (1962-1985)

Synoptique liaison satellite

'Telstar', le premier satellite de télécommunication

C'est le premier lancement de satellite de télécommunications (Telstar 1) à 5 632 km d'apogée (apoapside) et 952 km de périgée (périapside). Il s'agit donc du premier « satellite à défilement » de l'histoire : il n'est donc pas géostationnaire. Il n'est visible simultanément d'Andover (USA) et de Pleumeur que par période de 20 minutes (pour certaines orbites seulement) [5].

La taille des paraboles

Il faut aussi rappeler que lors de l'installation des antennes (1968→1985), on travaillait principalement en Bande C (fréquences d'environ 4 gigahertz), ce qui nécessitait des paraboles importantes pour les émissions/réceptions sur ces fréquences. Les ateliers grenoblois "NEYRPIC"(Neyret-Beylier et Piccard-Pictet) devenus Alstom, depuis.. et les ateliers "AMP", ont assuré la conception/construction des paraboles de Pleumeur-Bodou. Les premières antennes posées à Pleumeur devaient avoir une parabole importante pour gagner du « gain d'antenne » en réception, afin de s'affranchir le plus possible d'équipements (amplis paramétriques + cuves à hélium) à refroidissements liquides, lourds et contraignants. Exemple: PB4 en 32,50 mètres permet d'utiliser des amplis paramétriques à température ambiante. La taille des paraboles ira en diminuant avec les années ; On mesurera les progrès accompli entre PB1 (1962) et PB8 (1988, diamètre 13 m).

La diffusion vers les satellites

Pour information, le signal au départ du satellite était amplifié à un niveau de (+30 dBm)(décibels par milliwatt). En tenant compte de la perte de puissance du signal pendant le transfert vers le sol : -190 dBm, lors de l'arrivée sur terre, les signaux devaient être correctement amplifiés (gain de la parabole : -60 dBm + gain de l'amplificateur paramétrique faible bruit : -60 dBm), pour être exploitables par la station de Pleumeur-Bodou. L'amplificateur paramétrique étant techniquement limité au niveau du gain, seule la taille des paraboles permettait donc de gagner de précieux décibelsConversions Watts/Dbm/Volts Rappelons également que les satellites de l'époque étaient loin d'égaler en termes de puissance d'émission, en termes de taille de parabole et en termes de "PIRE", les performances des satellites actuels. Ce fait est à mettre en relation avec le discours sur les tailles de paraboles du CTS. Les liaisons satellite étaient retransmises en analogique jusqu'en 1985, en analogique et en numérique jusqu'en 1988, et entièrement numérisées après cette date.

Les émetteurs H.F

Les émetteurs HF de PB7 par exemple, étaient d'une puissance de 3 kilowatts (en puissance maximum) sur la bande de fréquence SHF (5 825 à 6 425 MHz). Les émissions se faisant sur plusieurs porteuses, pour éviter des problèmes d'interférences, le niveau d'émission était réduit de 6 dB, ce qui ramenait la puissance utile par émetteur à 750 watts. Les émetteurs du CTS était « bridés » à 200 watts.

Les huit émetteurs par antennes consommaient chacun 15 kVA (kilovoltampères), la puissance consommée s'élevait donc à 120 kVA.

Pour les antennes 32 m (PB6/PB3/PB7/PB4), la puissance totale nécessaire était donc de 480 kVA. La sécurité des l'alimentation était assurée par une batterie d'onduleurs alimentés par batteries. Les batteries étaient elle-mêmes rechargées au moyen de groupes électrogènes en cas de défaillance du Secteur.

Les antennes PB3/PB4/PB6/PB7/PB8/PB10 émettaient en « double polarisation circulaire », permettant de doubler la bande passante disponible, tout en gardant la même puissance d'émission.

Les amplis de puissance (émetteurs) étaient de deux types :

  • pour l'usage général sur l'ensemble de la bande 5 900-6 400 MHz : des amplificateurs à TOP (tube à ondes progressives (en anglais : TWT travelling waves tube)) puissance 1 kW, 3 à 5 kW selon les modèles, bande passante 500 MHz ;
  • pour des usages spécifiques (par exemple la télévision) : des amplificateurs à klystron puissance 3 kW (en général), bande passante 40 MHz déplaçable en 12 canaux sur la bande 5 900-6 400 MHz.

Les émetteurs étaient couplés à la source et pouvaient donc émettre en même temps (par exemple x circuits téléphoniques avec un ou plusieurs émissions TV).

Chaîne d'émission

Opérations réalisées au cœur du bâtiment principal :

  • modulation : un étage électronique créait la porteuse à 70 MHz et la modulait suivant la source.
  • filtrage : l'étage suivant avait pour rôle de limiter l'étalement du spectre suite à la modulation.
  • transposition : cet étage transposait en fréquence, le sous-ensemble précédent, dans la gamme de fréquences d'émission de la parabole.

Opérations réalisées au niveau de la parabole :

  • amplification : élévation du niveau de la puissance, pour transmission vers le satellite.

Modes de Transmissions

On peut raisonnablement parler de deux périodes concernant la transmission satellite :

  • la première période, de 1962 à 1983, les antennes transmettent leur signaux en analogique (AMRF).
  • à partir de PB4 (1976), plusieurs antennes du site utiliseront l'AMRT comme type d'émission pour envoyer leurs données aux satellites.

L'AMRT est un mode de transmission en numérique. Chaque transmissions en AMRT mobilisait un transpondeur à 72 MHz sur le satellite.

Le débit d'une transmission en AMRT était de 120,832 Mb/s.

Un autre mode de transmission numérique : IBS (intelsat business service)/IDR (intermediate data rate) était également disponible : transmission par plusieurs porteuses à 2Mb/s (modulable selon besoins de 9,6 kb/s à 9,312 Mb/s) pour différents flux ; on divisait la bande passante transpondeur du satellite par autant de canaux IBS/IDR.

Classes et types d'antennes

  • Az-El  : Azimut/Élévation ⇒ Monture Azimutale
  • Ah-Dec : Angle-Horaire /Déclinaison ⇒ Monture Équatoriale
  • Illumination : type de système utilisé au cœur de la parabole, pour l'émission et la réception des signaux (par ex. : Cassegrain)

Poursuites

Pupitre de commande déportée, de poursuite satellite de l'antenne PB3. La poursuite principale étant située dans l'embase de l'antenne.

Il ne suffit pas de pointer un satellite, encore faut-il le suivre lors de ses déplacements, un dispositif de poursuite est alors nécessaire. Le but d'un tel système est de mesurer en permanence l'écart entre le signal reçu et le signal optimal ; après avoir calculé la différence, le système de poursuite envoyait des « ordres » aux asservissements afin de corriger par des mouvements mécaniques, le pointage vers le satellite visé.

PB2 utilisait une poursuite dite « Monopulse », qui par l'intermédiaire de deux mesures faites dans l'axe du cornet, calculait la dérive du pointage. À partir de PB3 et pour les autres antennes, on utilisera une poursuite du type « extracteur de mode », utilisant une platine d'écartométrie[6] (on mesure les variations de vitesse du champ électromagnétique de l'onde rentrant dans le guide d'onde, au niveau du cornet et on en déduit une correction)[7].

Services INTELSAT

Article détaillé : Intelsat.

Classes Intelsat

La Classe Intelsat est une norme concernant les antennes des stations terrestres, fixée suivant les besoins par l'opérateur Intelsat :

  • Intelsat III : taille parabole de 30 mètres, structure Carrousel, Facteur Qualité à 4 GHz : 40,7 dB/kelvin (PB3)
  • Intelsat A : taille parabole comprise entre 32,50 mètres et 26 mètres, périscope pour déport équipement transmissions, Cornet corrugué fixe. Coût d'une station : 60 000 000 francs (1981) (soit 9 146 941 euros en 2008, sans tenir compte de l'inflation)
  • Intelsat B : taille parabole comprise entre 14,50 mètres et 8,80 mètres de diamètre, Cornet corrugué sur réflecteur, monture simplifiée, facteur qualité à 4 GHz : 31,7 dB/kelvin. Coût d'une station : 15 000 000 francs (1981) (soit 2 286 735 euros en 2008, sans tenir compte de l'inflation)
  • Intelsat C : taille parabole comprise entre 17,40 mètres et 14,50 mètres de diamètre, Cornet corrugué sur réflecteur.

Rappel sur le spectre radio-fréquence

Les Antennes du CTS

Les antennes sont nommées PBD('X'), le ('X') désignant l'ordre de mise en route des antennes lors de la construction du site. PBD1 désigne donc l'antenne Cornet + son radôme, etc. La plupart des antennes apparaissant sur les photos satellite et aériennes du site ci-dessous prises en 2003 et 2005, citées dans cet article n'existent plus aujourd'hui, en 2008. Les antennes sont toutes désormais hors service actif, elles sont placées en « position de survie », pointées au zénith, à la verticale (90 °), de façon à minimiser leur prise au vent. Il n'y a plus aucune maintenance technique sur les antennes.

Il faut aussi savoir que les antennes étaient toutes reliées au bâtiment central par des guides d'ondes, afin de piloter les équipements à distance. Pour PBD2, par exemple, les liaisons en émission se faisaient à 70 MHz, la réception se faisant en 2 bandes à 300 MHz et 600 MHz. À partir de PBD3 on utilisera des guides d'ondes de section elliptique, afin de transporter le signal vers le bâtiment principal.

Liste des antennes sur le site

PBD1/ "Le Radôme"

  • Date de mise en service : 1962
  • Date de mise hors service : 1985
  • Hauteur de l'antenne cornet : 34 mètres
  • Longueur de l'antenne cornet : 54 mètres
  • Diamètre base du radôme: 54 mètres
  • Diamètre de la sphère enveloppante : 64 mètres
  • Surface réflecteur : 360 m2
  • Gain réception : 57 dB à 4 170 MHz
  • Gain émission : 59,5 dB à 6 390 MHz
  • Température de bruit au zénith : 32 kelvin, radôme sec (0,86478 dB)
  • Poids : 340 tonnes
  • Matériaux constituant : alliage aluminium-magnésium
L'antenne cornet PBD1 : « La Grande Oreille »

PBD1 fut la première antenne mise en service en 1962 : c'est en fait le nom de l'antenne Cornet sous le radôme. Pour positionner l'antenne cornet avec une extrême précision (3/100e de degré) on utilisait une première « antenne traqueur » d'acquisition, permettant de repérer le satellite à suivre avec une précision de 10°, l'acquisition du signal balise satellite étant réalisée en VHF (136 MHz) par cette antenne, une deuxième antenne de tracking (antenne traqueur de précision), permettait alors de verrouiller complètement le satellite au 15/1 000e de degrés près. L'ensemble était piloté par des calculateurs IBM 1620, des calculateurs IBM 1623 ( gestion des circuits mémoires) et des IBM 1622 (Lecteurs de cartes perforées) qui repositionnaient le tout, toutes les 4 secondes, en utilisant de puissants servomoteurs pour aligner l'antenne.

Deux "cabines" étaient installées sur l'antenne:

- la cabine du bas servait aux instruments de poursuite et d'alignement pilotant ainsi les servo-moteurs hydrauliques.Cette cabine contenait également les équipements de puissance électrique pour l'amplificateur; les équipements de récupération du gaz hélium après son évaporation dans le MASER lors du refroidissement.

- la cabine du haut contenait le MASER, le système de refroidissement, les pompes à hélium et les pompes à azote liquide, le vernier de poursuite 'VAT'( "Vernier Auto Track" ), le coupleur de mode, les convertisseurs de fréquence, les équipements de mesure, les amplificateurs de puissance ainsi que l'électronique de "poursuite" (codeur/résolveur, transcodeur des coordonnées fournies par le VAT en signaux azimuth-élévation pour les moteurs).

Deux moteurs hydrauliques Vickers étaient utilisés pour faire pivoter, via une démultiplication, la roue dentée de positionnement en élévation de l'antenne ainsi l'antenne pivotait sur son axe horizontal, la rotation sur l'axe vertical d'azimut (vertical) étant assuré par d'autres moteurs. L'antenne mettait 4 minutes, 20 secondes pour faire un tour complet sur elle-même.

Le Radôme et l’antenne cornet sont classés en 2000 au titre des Monuments historiques et labellisés Patrimoine du XXe siècle, en 2004[8].

Émission

PBD1 utilisait pour la première fois en France, à cette époque, un "tube à ondes progressives" de 2 kW, pour l'émission, la technologie de guides d'ondes venant à cette époque d'être mise au point par les laboratoires de la CGE de Marcoussis.

Réception

Le cœur de réception de l'antenne cornet était constitué d'une part par 1200 cartes électroniques, et d'un Maser, chargé d'amplifier au niveau « quantique », les ondes électromagnétiques reçues. Le Maser devait pour fonctionner correctement, être maintenu dans un bain d'hélium liquide à --269 °C [5], changé toutes les huit heures, ceci afin de minimiser le bruit de fond. L'ensemble étant également plongé dans une cuve à azote liquide à --196 °C.

Le Radôme

Plunnett Milton est l'architecte qui a conçu le radôme, la société américaine "Bird Air Inc." l'a construit (enveloppe). Un premier radôme provisoire d'un poids de 7 tonnes fut posé en 1962, radôme qui se déchira au cours d'une tempête un mois après sa pose. Un second radôme provisoire fut donc posé en avril 1962, dans l'attente de la pose du radôme définitif (actuel), fin juillet 1962. Le premier radôme provisoire était reconnaissable sur les photos d'archives, à la « verrue » présente sur celui-ci. L'enveloppe du radôme en Dacron de 1,7 mm est gonflée sous pression de 4 millibars, d'air déshumidifié et de chaleur constante. La première chaufferie était située sur la gauche du bâtiment principal du CTS, vue du ciel (côté route). La vapeur à 110° était acheminée grâce à une tuyauterie souterraine vers le radôme (on voit encore la trace de la tranchée sur la photo aérienne). La nouvelle chaufferie se situe derrière le radôme, l'ancienne est destinée aux bâtiments principaux. L'enveloppe était également « sur-pressurisée » en cas de tempête, afin de mieux résister au vent. L'enveloppe pèse 27 tonnes, et reçoit 6 tonnes de peinture à l'Hypalon, régulièrement (tous les 5 ans) pour entretien.

Cliquez sur une vignette pour l’agrandir

PBD2

  • Date de mise en service : 29 septembre 1969[9]
  • Date de mise hors-service :
  • Date de démantèlement : 1979
  • Hauteur : ?? mètres
  • Diamètre : 27,5 mètres
  • Poids : ?? tonnes
  • Constructeur Parabole : NEYRPIC

PBD2 de création française, par opposition à PBD1 qui était de création américaine, fut une antenne de compromis : elle devait pouvoir indifféremment suivre des satellites à défilement, comme des géostationnaires. C'était la suite de PBD1 mais en parabolique (27,5 mètres de diamètre), utilisée pour les télécommunications vers le Japon. Cette antenne avait des moteurs hydrauliques lui permettant de suivre les satellites à défilement comme PBD1 (NDR : on en était encore à se poser la question de la faisabilité des géostationnaires).

À leur apparition, on a remplacé les moteurs hydrauliques de PBD1 par des moteurs électriques car sa structure le permettait, mais pas ceux de PBD2 qui sont restés en service jusqu'à son démontage.

Cette antenne ne nécessitait pas de radôme de protection, à la différence de PBD1. Pourtant, il apparaît très vite aux yeux des responsables que les performances attendues ne sont pas au rendez-vous : l'antenne, ayant même été baptisée du sobriquet : "PB -2" ou "DB 2" du fait de la perte notable de gain (-2 dB)[10]!

Cette antenne sera très vite remplacée par PBD10 sur même embase en 1990. PBD2 était équipée au foyer de la parabole de 4 cornets pour les télécommunications, surmontés par un petit dôme de mylar, afin de les protéger des intempéries. La source d'émission était située dans l'embase la parabole, mais les amplificateurs paramétriques et les cuves à hélium étaient eux, placés derrière la parabole et suivaient ses mouvements.

Cliquez sur une vignette pour l’agrandir

PBD3

  • Classe : Intelsat 3
  • Date de mise en service : 1973
  • Date de mise hors-service : 2003
  • Hauteur : 35 mètres
  • Diamètre : 30 mètres
  • Poids : environ 300 tonnes
  • Constructeur Parabole : NEYRPIC

PBD3 introduit un nouveau concept : l'antenne avec bâtiment intégré, à la différence des deux précédentes à l'époque. Cette antenne, à la différence de PBD2 juste avant, était spécialement conçue pour les satellites géostationaires[11].

L'antenne contenait une salle-cabine placée derrière la coupole avec deux amplificateurs paramétriques refroidis à l'hélium gaz et les émetteurs de puissance.

La cabine inférieure contenait les alimentations haute-tension pour les émetteurs, ainsi que les équipements de poursuite .

PBD3 disposait d'un ascenseur, avec un escalier tournant autour de la cage. Nota : pour faire un tour complet l'antenne mettait 10 minutes, avec un angle de rotation maximum de 355 °. PB3 avait deux types de moteurs au niveau des roulements de contact sol : moteurs à courants continus + moteurs à courants alternatifs antiparasités, un système rendu nécessaire pour compenser l'imprécision « mécanique » de l'ensemble. PB3 était également l'antenne de « secours » pour toutes les autres antennes du site. PB3 avait également pour vocation d'être secours pour les câbles TAT.

Cliquez sur une vignette pour l’agrandir
Vous pouvez aussi voir...